
Home Learning: Maths - Day 1 (Multiplication)

Video Link: https://vimeo.com/458926418

When we multiply by the _____ number, we use ____ as a place holder.

We may still need to .

The final step is to find the _____.

	3	6	4	7			9	6	3
×			2	5		×		4	7

Ranjit's journey to school is 1,345m.

He walks to school every week day?

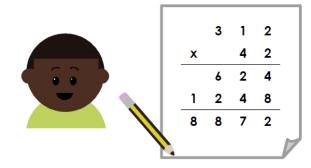
How far does he walk in 5 weeks?

FLUENCY 3

A school buys 14 boxes of tennis balls. There are 125 tennis balls in each box. How many tennis balls are there altogether?

Children are expected to complete 1 or 2 of these slides... The difficulty gets harder as you move through the slides so if you are unsure, begin on the fluency section.

TASKS


Home Learning: Maths – Day 1 (Multiplication)

YR6 PROGRESSION IN MASTERY LESSON PACK - MULTIPLY UP TO A 4-DIGIT BY 2-DIGIT

REASONING 1

Caleb is multiplying using long multiplication.

Can you explain his error and correct it?

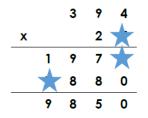
REASONING 2

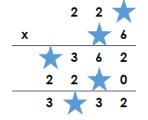

Convince Me!

If 1,234 × 20 = 24,680 then 1,234 × 21 = 24,680 + 1,234

REASONING 3

Always, Sometimes or Never True?


Long multiplication is the most efficient way of multiplying a 2-digit number by a 4-digit number.



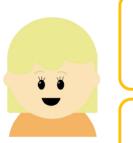
Explain your reasoning.

REASONING 4

Fill in the missing digits.

REASONING TASK

Home Learning: Maths – Day 1 (Multiplication)


YR6 PROGRESSION IN MASTERY LESSON PACK - MULTIPLY UP TO A 4-DIGIT BY 2-DIGIT

PROBLEM SOLVING 1

Use the digit cards below to create two 4-digit by 2-digit multiplication calculations which give an answer greater than 500,000.

PROBLEM SOLVING 2

All of the missing digits in the calculation below are 2, 4, 6 or 8.

2

3

5

8

x 0

ROBLEM SO

Find all possibilities.

Help Asha calculate the missing digits.

Answers coming up...

The next slide will contain the answers - make sure you have finished before you check the next slide. Please feel free to email any questions, queries or examples of work to your class teacher.

Max.jones9@taw.org.uk
Lynne.sherry@taw.org.uk
Jane.kerr@taw.org.uk

Fluency 1

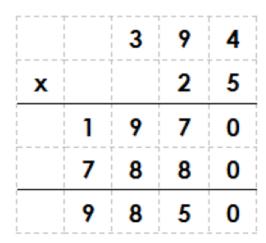
When we use long multiplication, we always start by multiplying by the **ones** then move to by multiplying the **tens**.

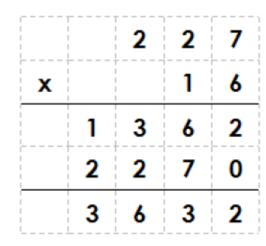
When we multiply by the **tens** number, we use **zero** as a place holder.

We may still need to exchange.

The final step is to find the **total**.

$$3,647 \times 25 = 91,175$$


Fluency 2


 $1,345 \text{m} \times 25 = 33,625 \text{m}$ (Ranjit only walks 5 days out of 7)

Fluency 3

There are 1,750 tennis balls all together.

Reasoning 4

Reasoning 1

Pupils spot that Caleb has not used zero as a place holder when multiplying by 40

Modelled DAB Reasoning Responses

- D Caleb has made an error
- A Caleb has not used zero as a place holder when multiplying by 40
- **B** Caleb has multiplied accurately by 2 but the number he is multiplying by is 42 therefore in the 2^{nd} row he should multiply his numbers by 40. The answer should be $10 \times 10 \times 10^{nd}$ x bigger

Reasoning 2

Pupil responses should why the statement is correct.

Modelled DAB Reasoning Response

- **D** The statement is correct.
- $A 1,234 \times 21$ is the same as $1,234 \times 20 + 1,234$.
- \mathbf{B} 21 is one more than 20 so all that is needed is one more lot of 1,234

Reasoning 3

Pupil responses should show that Asha's statement is sometimes true.

Modelled DAB Reasoning Response

- **D** It is sometimes true.
- **A** Long multiplication can be the most efficient way of multiplying 2 digits by 4 digits but it depends on the numbers involved.
- **B** For example, $1,100 \times 15$ can be calculated mentally $(1,100 \times 10 + 1,100 \times 5)$ whereas for $3,573 \times 76$, it would be more efficient to use a written method.

Home Learning: Maths - Day 2 (Known Facts) Video Link: https://vimeo.com/466189554

YR6 PROGRESSION IN MASTERY LESSON PACK - REASON FROM KNOW FACTS

FLUENCY 1

Complete the stem sentences.

is the inverse of is the inverse of

Now, use the inverse to complete these calculations.

$$15 \times 35 = 525$$

$$153 \div 9 = 17$$

FLUENCY 2


Complete these calculations.

FLUENCY 3

Use this fact - $45 \times 7 = 315$ - to work out:

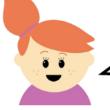
FLUENCY 4

Ranjit worked out the solution to 5,600 ÷ 8 by using a known fact.

Give 4 facts he could have used.

© Copyright Deepening Understanding LTD 2019 Photocopiable for educational purposes only

Children are expected to complete 1 or 2 of these slides... The difficulty gets harder as you move through the slides so if you are unsure, begin on the fluency section.


Home Learning: Maths - Day 2 (Known Facts)

YR6 PROGRESSION IN MASTERY LESSON PACK - REASON FROM KNOW FACTS

REASONING 1

Spot Millie's mistake.

If I know $144 \div 36 = 4$, then $144 \div 18$ must equal 2 because 18 is half of 36!

REASONING 3

Convince Me

I can use the calculation $6 \times 7 = 42$ to work out the answers to these calculations.

 0.6×0.7

0.007 x 6

42 x 0.7

REASONING 2

True or False?

 $2 \times 67 \times 5 = 67 \times 10$

Explain how you know.

REASONING 4

Which of these calculations is the Odd One Out?

 $67 \times 8 =$

670 ÷ 8 =

 $0.8 \times 6.7 =$

REASONING TASKS

Home Learning: Maths - Day 2 (Known Facts)

YR6 PROGRESSION IN MASTERY LESSON PACK - REASON FROM KNOW FACTS

PROBLEM SOLVING 1

Write as many facts as you can using the digit cards only once in each calculation.

PROBLEM SOLVING 2

If the answer is

564

What could the question be?

Try to aim for around 10 calculations for Problem Solving 2.

