
Day 1 Maths Starter

Day 1 Maths Starter Answer

Day 1 Maths Fractions: 4 operations

Video Link: https://vimeo.com/480708159

Remember you can look back at last week's links to remind you.

Slide 4 is aimed at 2/3 star

Slide 5 contains the answers to 2/3 star

Slide 6 is aimed at 1 star (try this one if you don't feel confident on slide 4)

Slide 7 contains the answers to 1 star

Four rules with fractions

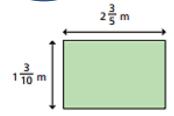
Width X height.

Work out the missing total.

Total of

the 4

sides.


2/3	2/3	2 3	<u>2</u> 3	2 1 3

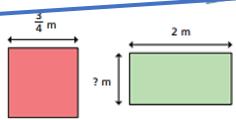
Show all the steps in your working.

Explain your method to a partner.

Work out the perimeter of the rectangle.

Explain your method to your partner.

Did you work it out in the same way?


- Complete the calculations.

- a) $\left(\frac{2}{3} + \frac{2}{3}\right) \times 3$ b) $\left(\frac{2}{3} + \frac{2}{3}\right) \div 3$ c) $\frac{2}{3} + \frac{2}{3} \times 3$ d) $\frac{2}{3} + \frac{2}{3} \div 3$
- 4 Jack mixes $\frac{2}{3}$ of a litre of orange juice and $\frac{3}{4}$ of a litre of apple juice. He pours the juice into 5 glasses equally.

e area of these two shapes are equal.

Find the height of the rectangle.

In a class, $\frac{2}{3}$ of the pupils are boys.

 $\frac{1}{4}$ of the girls wear glasses and $\frac{1}{6}$ of the boys wear glasses.

Do more boys or girls wear glasses?

Explain your reasoning.

Work out the calculation.

$$\left(1\frac{3}{5} - \frac{7}{10}\right)^2$$

Use what you know about working with fractions to explain, prove or disprove the following statements.

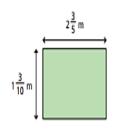
- Half of a half of a half is an eighth.
- Quarter of a half plus half of a quarter is a quarter.

Explore the different totals you can make using each card once only.

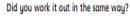
How much juice is in each glass?

Four rules with fractions

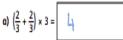
Work out the missing total.


Show all the steps in your working.

- Complete the calculations.

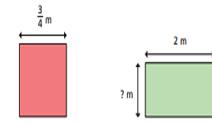

Work out the perimeter of the rectangle.

Explain your method to a partner.



2+3=5

Explain your method to your partner.


- b) $\left(\frac{2}{3} + \frac{2}{3}\right) \div 3 =$
- c) $\frac{2}{3} + \frac{2}{3} \times 3 = 2\frac{2}{3}$

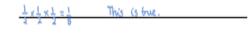
4 Jack mixes $\frac{2}{3}$ of a litre of orange juice and $\frac{3}{4}$ of a litre of apple juice.

> He pours the juice into 5 glasses equally. How much juice is in each glass?

The area of these two shapes are equal. Find the height of the rectangle.

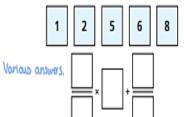
6 In a class, $\frac{2}{3}$ of the pupils are boys. $\frac{1}{4}$ of the girls wear glasses and $\frac{1}{6}$ of the boys wear glasses. Do more boys or girls wear glasses? Explain your reasoning.

1 = wears glames


- Work out the calculation.

$$\left(1\frac{3}{5} - \frac{7}{10}\right)^2$$

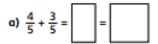

Use what you know about working with fractions to explain, prove or disprove the following statements.



Half of a half of a half is an eighth.

Quarter of a half plus half of a quarter is a quarter.

Explore the different totals you can make using each card once only.


Add and subtract fractions

Complete the calculations.

c)
$$\frac{8}{5} - \frac{6}{5} =$$

b)
$$\frac{6}{5} + \frac{3}{5} =$$

Complete the calculations.

a)
$$\frac{4}{7} + \frac{2}{7} =$$

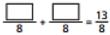
f)
$$\frac{17}{9} - \frac{8}{9} = \boxed{}$$

b)
$$\frac{4}{7} + \frac{3}{7} = \boxed{}$$

g)
$$\frac{16}{9} - \frac{8}{9} =$$

c)
$$\frac{4}{7} + \frac{4}{7} = \boxed{}$$

h)
$$\frac{7}{9} + \frac{2}{9} + \frac{8}{9} =$$


d)
$$\frac{8}{7} - \frac{3}{7} =$$

i)
$$\frac{7}{15} + \frac{2}{15} + \frac{8}{15} = \boxed{}$$

e)
$$\frac{7}{9} + \frac{8}{9} =$$

j)
$$\frac{7}{15} - \frac{2}{15} + \frac{8}{15} =$$

What could the missing numerators be?

Give six different possibilities.

Dora has $2\frac{3}{8}$ litres of juice.

She pours out $\frac{9}{8}$ litres of juice.

How many litres of juice does she have left?

Fill in the missing numerators.

a)
$$\frac{3}{8} + \frac{13}{8} = \frac{13}{8}$$

g)
$$\frac{4}{7} + \frac{1}{7} + \frac{4}{7} = 2$$

b)
$$\frac{13}{8} - \frac{}{8} = \frac{7}{8}$$

h)
$$\frac{5}{7} + \frac{5}{7} = 2$$

c)
$$\frac{13}{8} - \frac{}{8} = 1$$

i)
$$\frac{6}{7} + \frac{1}{7} + \frac{6}{7} = 2$$

d)
$$\frac{11}{9} + \frac{9}{9} = \frac{22}{9} = 2 \frac{9}{9}$$
 j) $\frac{14}{7} + \frac{7}{7} + \frac{4}{7} = 3$

j)
$$\frac{14}{7} + \frac{1}{7} + \frac{4}{7} = 3$$

e)
$$\frac{11}{9} + \frac{1}{9} = \frac{1}{9} = 2\frac{2}{9}$$
 k) $\frac{15}{7} + \frac{1}{7} + \frac{5}{7} = 3$

k)
$$\frac{15}{7} + \frac{15}{7} + \frac{5}{7} = 3$$

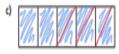
f)
$$\frac{22}{9} - \frac{1}{9} = \frac{1}{9} = 2\frac{2}{9}$$
 i) $\frac{16}{7} + \frac{1}{7} + \frac{6}{7} = 4$

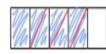
i)
$$\frac{16}{7} + \frac{1}{7} + \frac{6}{7} = 4$$

Compare answers with a partner. What do you notice?

Add and subtract fractions

Use the bar models to help you.




$$\frac{6}{5} + \frac{3}{5} = \frac{9}{5} = \boxed{\frac{4}{5}}$$

$$\frac{8}{5} - \frac{6}{5} = \frac{2}{5}$$

$$\frac{9}{5} - \frac{3}{5} = \frac{6}{5} = \frac{1}{5}$$

2 Complete the calculations.

f)
$$\frac{17}{9} - \frac{8}{9} = \boxed{\frac{9}{9}}$$

b)
$$\frac{4}{7} + \frac{3}{7} = \boxed{\frac{7}{5}} = \boxed{$$

g)
$$\frac{16}{9} - \frac{8}{9} = \boxed{\frac{6}{9}}$$

c)
$$\frac{4}{7} + \frac{4}{7} = \boxed{\frac{9}{7}} = \boxed{\frac{1}{7}}$$

h)
$$\frac{7}{9} + \frac{2}{9} + \frac{8}{9} = \boxed{\frac{17}{9}}$$

d)
$$\frac{8}{7} - \frac{3}{7} = \boxed{\frac{5}{7}}$$

i)
$$\frac{7}{15} + \frac{2}{15} + \frac{8}{15} = \boxed{\frac{17}{15}} = \boxed{\frac{2}{15}}$$

e)
$$\frac{7}{9} + \frac{8}{9} = \frac{15}{9} = \frac{1}{9}$$

$$j) \ \frac{7}{15} - \frac{2}{15} + \frac{8}{15} = \boxed{\frac{13}{15}}$$

What could the missing numerators be?

Give six different possibilities.

4 Dora has $2\frac{3}{8}$ litres of juice.

She pours out $\frac{9}{8}$ litres of juice.

How many litres of juice does she have left?

Fill in the missing numerators.

a)
$$\frac{3}{8} + \frac{13}{8} = \frac{13}{8}$$

g)
$$\frac{4}{7} + \frac{6}{7} + \frac{4}{7} = 2$$

b)
$$\frac{13}{8} - \frac{6}{8} = \frac{7}{8}$$

h)
$$\frac{5}{7} + \frac{4}{7} + \frac{5}{7} = 2$$

c)
$$\frac{13}{8} - \frac{5}{8} = 1$$

i)
$$\frac{6}{7} + \frac{2}{7} + \frac{6}{7} = 2$$

d)
$$\frac{11}{9} + \frac{11}{9} = \frac{22}{9} = 2 \frac{4}{9}$$

j)
$$\frac{14}{7} + \frac{3}{7} + \frac{4}{7} = 3$$

e)
$$\frac{11}{9} + \frac{9}{9} = \frac{20}{9} = 2\frac{2}{9}$$

k)
$$\frac{15}{7} + \frac{1}{7} + \frac{5}{7} = 3$$

f)
$$\frac{22}{9} - \frac{2}{9} = \frac{20}{9} = 2\frac{2}{9}$$

i)
$$\frac{16}{7} + \frac{6}{7} + \frac{6}{7} = 4$$

Compare answers with a partner. What do you notice?

Here are some fraction cards.

Use the cards to write pairs of fractions with a total of 2

$$\left| \frac{7}{q} \right| + \left| \frac{1}{q} \right| = 2$$

$$\frac{13}{8}$$
 + $\frac{3}{6}$ = 3

$$\frac{q}{g}$$
 + $\frac{7}{g}$ = 2

Annie and Dexter both have a skipping rope.

Annie's rope is $\frac{3}{4}$ m shorter than Dexter's rope.

The ropes are $\frac{13}{4}$ m altogether.

How long is each skipping rope?

